Search results

Search for "density functional theory (DFT)" in Full Text gives 160 result(s) in Beilstein Journal of Nanotechnology.

Investigating structural and electronic properties of neutral zinc clusters: a G0W0 and G0W0Г0(1) benchmark

  • Sunila Bakhsh,
  • Muhammad Khalid,
  • Sameen Aslam,
  • Muhammad Sohail,
  • Muhammad Aamir Iqbal,
  • Mujtaba Ikram and
  • Kareem Morsy

Beilstein J. Nanotechnol. 2024, 15, 310–316, doi:10.3762/bjnano.15.28

Graphical Abstract
  • functional theory (DFT) calculations at different levels of theory to study the transition states (vdW to semiconductor-like states) in Zn clusters. In addition, the approaches used to study the electronic properties, such as ionization potentials (IPs) of zinc, are based on the ∆-SCF methods; for some
  • [4][5][6]. The majority of the research work on Zn clusters is focused on the vdW transition for the Zn clusters. For example, Wang et al. [7] investigated it by using the PW91 functional, which suggested that the transition starts from n = 8. Iokibe et al. [8] obtained a similar result using density
PDF
Album
Full Research Paper
Published 15 Mar 2024

A combined gas-phase dissociative ionization, dissociative electron attachment and deposition study on the potential FEBID precursor [Au(CH3)2Cl]2

  • Elif Bilgilisoy,
  • Ali Kamali,
  • Thomas Xaver Gentner,
  • Gerd Ballmann,
  • Sjoerd Harder,
  • Hans-Peter Steinrück,
  • Hubertus Marbach and
  • Oddur Ingólfsson

Beilstein J. Nanotechnol. 2023, 14, 1178–1199, doi:10.3762/bjnano.14.98

Graphical Abstract
  • formation of ethane CH3CH3 in this process, it results in threshold values of 9.67 and 10.29 eV at the respective levels of theory. Similar to the parent ion, the density functional theory (DFT) value agrees well with the experimental AE, while the DLPNO-CCSD(T)-TZVP value is ≈0.3 eV above its higher
PDF
Album
Supp Info
Full Research Paper
Published 06 Dec 2023

Density functional theory study of Au-fcc/Ge and Au-hcp/Ge interfaces

  • Olga Sikora,
  • Małgorzata Sternik,
  • Benedykt R. Jany,
  • Franciszek Krok,
  • Przemysław Piekarz and
  • Andrzej M. Oleś

Beilstein J. Nanotechnol. 2023, 14, 1093–1105, doi:10.3762/bjnano.14.90

Graphical Abstract
  • separation (adhesion) were used. We applied first principles methods based on density functional theory (DFT) to study Au/Ge heterostructures with different interfacial plane orientations. The remainder of the paper is organized as follows. In the Methodology section the calculation details are given, and
PDF
Album
Full Research Paper
Published 15 Nov 2023

Ni, Co, Zn, and Cu metal-organic framework-based nanomaterials for electrochemical reduction of CO2: A review

  • Ha Huu Do and
  • Hai Bang Truong

Beilstein J. Nanotechnol. 2023, 14, 904–911, doi:10.3762/bjnano.14.74

Graphical Abstract
  • . To gain insights into the reaction pathway and to provide explanations for the observed outcome, the research team employed computational science techniques. Density functional theory (DFT) calculations implied that Co-PMOF possessed the lowest total free energy leading to its superiority as a
PDF
Album
Review
Published 31 Aug 2023

Two-dimensional molecular networks at the solid/liquid interface and the role of alkyl chains in their building blocks

  • Suyi Liu,
  • Yasuo Norikane and
  • Yoshihiro Kikkawa

Beilstein J. Nanotechnol. 2023, 14, 872–892, doi:10.3762/bjnano.14.72

Graphical Abstract
  • on HOPG has been reported in some cases [44][45][46], but the flat-on orientation is more favorable [47][48][49]. For an example of the flat-on orientation, density functional theory (DFT) calculations revealed the optimized geometry of n-dodecane adsorbed onto C96H24 as a HOPG model (Figure 2a). The
PDF
Album
Review
Published 23 Aug 2023

Transferability of interatomic potentials for silicene

  • Marcin Maździarz

Beilstein J. Nanotechnol. 2023, 14, 574–585, doi:10.3762/bjnano.14.48

Graphical Abstract
  • [14]. Ab initio calculations The ab initio calculation methodology here is closely analogous to that used in [15]. Hence, its description is also very similar, that is, density functional theory (DFT) [16][17], ABINIT plane-wave approximation code [18][19], local density approximation (LDA) [20][21
  • large honeycomb dumbbell (LHDS) silicene (Figure 1) obtained from density functional theory (DFT) and molecular statics (MS) computations were used. Computational cost and performance of the analyzed potentials were compared. Considering the performance and the cost of calculations, the classical
  • dumbbell (LHDS) silicene phases from density functional theory (DFT) calculations: lattice parameters a and b (Å), average cohesive energy Ec (eV/atom), average bond length d (Å), average height h (Å), 2D elastic constants Cij (N/m), 2D Young’s modulus E (N/m), Poisson’s ratio ν, and 2D Kelvin moduli Ki (N
PDF
Album
Supp Info
Full Research Paper
Published 08 May 2023

Conjugated photothermal materials and structure design for solar steam generation

  • Chia-Yang Lin and
  • Tsuyoshi Michinobu

Beilstein J. Nanotechnol. 2023, 14, 454–466, doi:10.3762/bjnano.14.36

Graphical Abstract
  • can be predicted by density functional theory (DFT) calculations of the conjugated structures. This is an advantage over other carbon materials, even if they are of the same chemical composition [18][19][20][21][22]. We review the recent progress in the material development of conjugated solar
  • constructing electron donor–acceptor pairs. Density functional theory (DFT) simulations indicated donor–acceptor interactions between arginine and PDA subunits, including the formation of 5,6-dihydroxyindole (DHI) and indole-5,6-quinone (IQ). Dopamine and arginine were copolymerized in an aqueous solution at
PDF
Album
Review
Published 04 Apr 2023

From a free electron gas to confined states: A mixed island of PTCDA and copper phthalocyanine on Ag(111)

  • Alfred J. Weymouth,
  • Emily Roche and
  • Franz J. Giessibl

Beilstein J. Nanotechnol. 2022, 13, 1572–1577, doi:10.3762/bjnano.13.131

Graphical Abstract
  • spectroscopy experiments [6][7][8], and has been studied with density functional theory (DFT) [9][10]. Previous work [11] has used dI/dV spectroscopy as a measurement of the density of electronic states [12] and identified this interface state starting at 0.6 eV. One characteristic of a two-dimensional
PDF
Album
Supp Info
Letter
Published 22 Dec 2022

Role of titanium and organic precursors in molecular layer deposition of “titanicone” hybrid materials

  • Arbresha Muriqi and
  • Michael Nolan

Beilstein J. Nanotechnol. 2022, 13, 1240–1255, doi:10.3762/bjnano.13.103

Graphical Abstract
  • (MLD) allows the deposition of these hybrid films using sequential, self-limiting reactions, similar to atomic layer deposition (ALD). In this paper, we use first principles density functional theory (DFT) to investigate the growth mechanism of titanium-containing hybrid organic–inorganic MLD films
  • growth could be achieved. Keywords: density functional theory (DFT) studies; double reactions; surface chemistry; titanicone; Introduction Molecular layer deposition (MLD), a thin film deposition technique, has attracted significant attention in recent years as a suitable approach for the deposition of
  • bridging/bidentate mixed bonding mode at temperatures over 250 °C and 300 °C [32]. Many studies show that the desired properties and the target thickness of a metalcone MLD film are not actually achieved. To help understand this, first principles density functional theory (DFT) calculations have been
PDF
Album
Supp Info
Full Research Paper
Published 02 Nov 2022

Design of surface nanostructures for chirality sensing based on quartz crystal microbalance

  • Yinglin Ma,
  • Xiangyun Xiao and
  • Qingmin Ji

Beilstein J. Nanotechnol. 2022, 13, 1201–1219, doi:10.3762/bjnano.13.100

Graphical Abstract
  • -amino acids on metal crystals of Ag, Cu, Pt and alloys by density functional theory (DFT) simulations. They revealed that Pt(531) with a step–kink metal surface has better enantiospecificity for eight α-amino acids (alanine, α-aminobutyric acid, valine, leucine, phenylalanine, serine, cysteine, and 3
PDF
Album
Review
Published 27 Oct 2022

Influence of water contamination on the sputtering of silicon with low-energy argon ions investigated by molecular dynamics simulations

  • Grégoire R. N. Defoort-Levkov,
  • Alan Bahm and
  • Patrick Philipp

Beilstein J. Nanotechnol. 2022, 13, 986–1003, doi:10.3762/bjnano.13.86

Graphical Abstract
  • [30]. ReaxFF force fields are specifically tuned for a set of atomic interactions. They are developed from quantum calculations and are adapted for MD simulations, providing faster calculations than pure quantum electrodynamics (QED)/density functional theory (DFT) and more information than classical
PDF
Album
Supp Info
Full Research Paper
Published 21 Sep 2022

Theoretical investigations of oxygen vacancy effects in nickel-doped zirconia from ab initio XANES spectroscopy at the oxygen K-edge

  • Dick Hartmann Douma,
  • Lodvert Tchibota Poaty,
  • Alessio Lamperti,
  • Stéphane Kenmoe,
  • Abdulrafiu Tunde Raji,
  • Alberto Debernardi and
  • Bernard M’Passi-Mabiala

Beilstein J. Nanotechnol. 2022, 13, 975–985, doi:10.3762/bjnano.13.85

Graphical Abstract
  • interactions, using single-electron approaches based on density functional theory (DFT) may not be an easy task. In fact, the 2p hole and 3d hole radial wave functions in such systems overlap significantly and may render the reproduction of the experimental spectrum difficult [33]. However, it is possible to
PDF
Album
Full Research Paper
Published 15 Sep 2022

Modeling a multiple-chain emeraldine gas sensor for NH3 and NO2 detection

  • Hana Sustkova and
  • Jan Voves

Beilstein J. Nanotechnol. 2022, 13, 721–729, doi:10.3762/bjnano.13.64

Graphical Abstract
  • molecular properties of polyaniline have been studied by quantum mechanical means in [4][8]. The band structure was calculated by Reis et al. [9], together with transmittance, electrical current flow, and charge density. For these calculations, density functional theory (DFT, [10]) based on the generalized
PDF
Album
Full Research Paper
Published 26 Jul 2022

Theoretical understanding of electronic and mechanical properties of 1T′ transition metal dichalcogenide crystals

  • Seyedeh Alieh Kazemi,
  • Sadegh Imani Yengejeh,
  • Vei Wang,
  • William Wen and
  • Yun Wang

Beilstein J. Nanotechnol. 2022, 13, 160–171, doi:10.3762/bjnano.13.11

Graphical Abstract
  • examined by means of density functional theory (DFT) calculations. Our results reveal that the properties of 1T′ TMDs are mainly affected by their anions. The disulfides are stiffer and more rigid, diselenides are more brittle. In addition, the 1T′ polytype is softer than 2H TMDs. Comparison with the
  • 1T′ structural polytype are systematically investigated by means of first-principles density functional theory (DFT) calculations. Our results demonstrate that the anisotropic mechanical properties of 1T′ TMD materials are greatly affected by their anions. They also show different properties in
PDF
Album
Supp Info
Full Research Paper
Published 02 Feb 2022

Tin dioxide nanomaterial-based photocatalysts for nitrogen oxide oxidation: a review

  • Viet Van Pham,
  • Hong-Huy Tran,
  • Thao Kim Truong and
  • Thi Minh Cao

Beilstein J. Nanotechnol. 2022, 13, 96–113, doi:10.3762/bjnano.13.7

Graphical Abstract
  • density functional theory (DFT) calculations, trapping experiments, and electron spin resonance measurements (Figure 10). Thus, the impact of intrinsic OVs within SnO2 NPs and the resulting S-scheme heterojunction on the band structure, charge transfer, and photocatalytic activity was presented. The
PDF
Album
Review
Published 21 Jan 2022

First-principles study of the structural, optoelectronic and thermophysical properties of the π-SnSe for thermoelectric applications

  • Muhammad Atif Sattar,
  • Najwa Al Bouzieh,
  • Maamar Benkraouda and
  • Noureddine Amrane

Beilstein J. Nanotechnol. 2021, 12, 1101–1114, doi:10.3762/bjnano.12.82

Graphical Abstract
  • is exceptionally promising for the next generation of photovoltaic and thermoelectric devices at room and high temperatures. Keywords: density functional theory (DFT); electronic properties; lattice thermal conductivity; optical properties; thermodynamic properties; thermoelectric properties; tin
  • transmission electron microscopy. As SnS and SnSe share a lot in common, both chemically and structurally, an experimental study verified that the π-SnS prototype exists in the form of π-SnSe. The phase stability of π-SnSe is also confirmed by Golan et al. [47]. By using density functional theory (DFT
  • make SnSe of great practical importance for the next generation of thermoelectric devices. Here, we report structural, optoelectronic, thermodynamic, and thermoelectric properties of the recently experimentally identified binary phase of tin monoselenide (π-SnSe) by using the density functional theory
PDF
Album
Full Research Paper
Published 05 Oct 2021

The role of convolutional neural networks in scanning probe microscopy: a review

  • Ido Azuri,
  • Irit Rosenhek-Goldian,
  • Neta Regev-Rudzki,
  • Georg Fantner and
  • Sidney R. Cohen

Beilstein J. Nanotechnol. 2021, 12, 878–901, doi:10.3762/bjnano.12.66

Graphical Abstract
  • images were compared with those computed by density functional theory (DFT) based on well-known single and dimer Si defects. The examples given here demonstrate the utility of deep learning in general and CNN in particular in the field of microscopy. In the following section, the emphasis is narrowed
PDF
Album
Review
Published 13 Aug 2021

Prediction of Co and Ru nanocluster morphology on 2D MoS2 from interaction energies

  • Cara-Lena Nies and
  • Michael Nolan

Beilstein J. Nanotechnol. 2021, 12, 704–724, doi:10.3762/bjnano.12.56

Graphical Abstract
  • gap in understanding thin film nucleation on 2D materials. In this paper, we present a density functional theory (DFT) study of the adsorption of small Co and Ru structures, with up to four atoms, on a monolayer of MoS2. We explore how the metal–substrate and metal–metal interactions contribute to the
  • preferred. Predictions made using these descriptors can be used when deciding which metal–substrate combination will be suitable for a particular application where the shape of the metal is vital. Methods All calculations for this study were carried out with density functional theory (DFT) using the Vienna
PDF
Album
Supp Info
Full Research Paper
Published 14 Jul 2021

Boosting of photocatalytic hydrogen evolution via chlorine doping of polymeric carbon nitride

  • Malgorzata Aleksandrzak,
  • Michalina Kijaczko,
  • Wojciech Kukulka,
  • Daria Baranowska,
  • Martyna Baca,
  • Beata Zielinska and
  • Ewa Mijowska

Beilstein J. Nanotechnol. 2021, 12, 473–484, doi:10.3762/bjnano.12.38

Graphical Abstract
  • of chlorine-doped polymeric carbon nitride. (a) Adsorption–desorption isotherms and (b) density functional theory (DFT) applied to the adsorption isotherms to obtain pore–size distributions of PCN and Cl-PCN. H2 evolution rate catalyzed by PCN and Cl-PCN. (a) DRS spectra, (b) PL emission spectra, (c
PDF
Album
Full Research Paper
Published 19 May 2021

Reconstruction of a 2D layer of KBr on Ir(111) and electromechanical alteration by graphene

  • Zhao Liu,
  • Antoine Hinaut,
  • Stefan Peeters,
  • Sebastian Scherb,
  • Ernst Meyer,
  • Maria Clelia Righi and
  • Thilo Glatzel

Beilstein J. Nanotechnol. 2021, 12, 432–439, doi:10.3762/bjnano.12.35

Graphical Abstract
  • reconstruction of a two-dimensional layer of KBr on an Ir(111) surface is observed by high-resolution noncontact atomic force microscopy and verified by density functional theory (DFT). The observed KBr structure is oriented along the main directions of the Ir(111) surface, but forms a characteristic double-line
  • temperature and density functional theory (DFT) calculations. The results suggest that this particular reconstruction of KBr occurs on Ir(111), due to a specific correlation of the lattice parameter. When deposited on a single layer of graphene on the same substrate, the topography of the KBr islands returns
  • answer, density functional theory (DFT) calculations have been performed to conclude on the observed structure. As a fundamental consideration, the lattice match for the orientation of KBr to fit the direction of Ir(111) due to was used and several possible periodicities have been considered as
PDF
Album
Supp Info
Full Research Paper
Published 11 May 2021

TiOx/Pt3Ti(111) surface-directed formation of electronically responsive supramolecular assemblies of tungsten oxide clusters

  • Marco Moors,
  • Yun An,
  • Agnieszka Kuc and
  • Kirill Yu. Monakhov

Beilstein J. Nanotechnol. 2021, 12, 203–212, doi:10.3762/bjnano.12.16

Graphical Abstract
  • supramolecular structures. It is noteworthy that individual W3O9 clusters, according to previous density functional theory (DFT) calculations [11], are characterized by the most stable six-membered ring structure with D3h symmetry. It consists of oxygen-bridged tungsten atoms with two additional terminal oxygen
PDF
Album
Full Research Paper
Published 16 Feb 2021

Molecular dynamics modeling of the influence forming process parameters on the structure and morphology of a superconducting spin valve

  • Alexander Vakhrushev,
  • Aleksey Fedotov,
  • Vladimir Boian,
  • Roman Morari and
  • Anatolie Sidorenko

Beilstein J. Nanotechnol. 2020, 11, 1776–1788, doi:10.3762/bjnano.11.160

Graphical Abstract
  • the nanosystem. There are many possible choices for the type of potential, but recently, due to its accuracy and adequacy, many-particle force fields have gained great popularity. In this work, we used the potential of the modified embedded-atom method (MEAM) which is based on density functional
  • theory (DFT). In this method, the resulting potential of the nanosystem is represented as the sum of the energy contributions of the individual atoms, and the contributions of pair and multielement interactions are considered separately. Thus, where Ui(r) is the potential of an individual atom, affecting
PDF
Album
Full Research Paper
Published 24 Nov 2020

PTCDA adsorption on CaF2 thin films

  • Philipp Rahe

Beilstein J. Nanotechnol. 2020, 11, 1615–1622, doi:10.3762/bjnano.11.144

Graphical Abstract
  • theoretically modelled using density functional theory (DFT). A prominent difference of the molecular properties on the different surface areas is the presence of mostly single molecules in CaF1/Si(111) regions, while ultrasmall molecular assemblies are experimentally observed on thicker CaF2 films. A rather
PDF
Album
Full Research Paper
Published 26 Oct 2020

Detecting stable adsorbates of (1S)-camphor on Cu(111) with Bayesian optimization

  • Jari Järvi,
  • Patrick Rinke and
  • Milica Todorović

Beilstein J. Nanotechnol. 2020, 11, 1577–1589, doi:10.3762/bjnano.11.140

Graphical Abstract
  • fast to compute, but they cannot accurately model hybrid materials, in which atomic interactions often feature a mixture of covalent and dispersive bonding, with charge transfer and polarization effects. Instead, we must employ quantum mechanical methods, such as density-functional theory (DFT) [12][13
PDF
Album
Supp Info
Full Research Paper
Published 19 Oct 2020

Adsorption and self-assembly of porphyrins on ultrathin CoO films on Ir(100)

  • Feifei Xiang,
  • Tobias Schmitt,
  • Marco Raschmann and
  • M. Alexander Schneider

Beilstein J. Nanotechnol. 2020, 11, 1516–1524, doi:10.3762/bjnano.11.134

Graphical Abstract
  • films on Ir(100) by scanning tunneling microscopy (STM) and density functional theory (DFT). The two substrates differ greatly with respect to their structural and potential-energy landscape corrugation with immediate consequences for adsorption and self-assembly of the molecules studied. On both films
PDF
Album
Full Research Paper
Published 05 Oct 2020
Other Beilstein-Institut Open Science Activities